GEOCIÊNCIA DA TERRA

INTRODUÇÃO

Componentes de estudo

a) Geologia: física e histórica.

b) Meteorologia: tempo e clima.

c) Oceanografia: os oceanos.

d) Astronomia: o que é externo à atmosfera.

As quatro esferas (Ver Ciclo da Agua)

1. Litosfera: a terra sólida.

2. Hidrosfera: a porção aquática da terra.

3. Atmosfera: a porção gasosa da terra.

4. Biosfera: onde existe vida.

Questões de interesse em nosso meio ambiente físico

- a) Recursos: água, solo, elementos metálicos e não-metálicos, luz solar, vento, etc.
- b) O uso *per capita* de elementos metálicos e não-metálicos é de 11 toneladas ao ano.
 - c) Recursos renováveis versus recursos não renováveis.
 - d) Problema ambientais e populacionais.

MINERAIS

- Um **mineral** é um material sólido inorgânico, com estrutura definida, encontrado na natureza.
- Um metalífero é um mineral metálico útil.

Átomos e forças

a) Átomo, na Grécia antiga, significava "indivisível", por exemplo, as pessoas daquela época acreditavam que o átomo era a menor partícula de matéria existente.

- b) Os átomos são compostos por nêutrons, prótons e elétrons.
- Número atômico: números de prótons no núcleo.
- Peso atômico: peso médio de um átomo.
- **Isótopo:** formas de um elemento com números atômicos idênticos, porém números diferentes de nêutrons no núcleo.
- c) Forças: forte, fraca, eletromagnética e da gravidade.

Propriedades dos minerais

a) Brilho: aparência ou qualidade de luz refletida na superfície.

b) Cor: natureza da luz e causa da cor.

c) Traço ou risco: cor do material em forma de pó.

d) Dureza: Escala de Moh (ver quadro abaixo).

Teste do risco: materiais de números mais elevados podem riscar materiais de números mais baixos.

e) A forma é determinada pelos sulcos, pela forma do cristal e pela fratura.

f) Gravidade específica

- A relação do peso de um material com o peso de um volume igual de água.
- Densidade de água = 1gm/cm³ = 1gm/ml.

Exemplo: chumbo = 7,7; alumínio = 2,7 ósmio = 22.

ESCALA DE MOH		Mineral
Dureza	10	Diamante
	9	Coríndon
	8	Topázio
	7	Quartzo
	6	Feldspato
	5	Apatita
	4	Fluorita
	3	Calcita
	2	Gipsita
Suavidade	1	Talco

Grupos minerais

- a) Silicatos: minerais com silício e oxigênio.
- O **silício** é um semimetal que forma uma estrutura piramidal com oxigênio.
- Outras formas incluem tetraedros simples (olivina), cadeias (augita), folhas (micas), estruturas tridimensionais (feldspatos e quartzo).
- b) Não-silicatos: representam a quarta parte da crosta terrestre:
- carbonatos: minerais com carbono e oxigênio, incluem a calcita, da qual extraímos o calcário (estradas) e o mármore (placas decorativas);
- óxidos: sólidos (óxidos básicos) com base de oxigênio; exemplo: hidróxido;
- sulfetos (S), sulfatos (SO₄), halóide (CL, F);
- halita: ou, sal-gema, mineral formado por sal;
- gipsita: gesso, cálcio;
- metais nativos: ferro, zinco, ouro, prata, níquel.

MAGMA Cristalização ROCHA ÍGNEA Intemperismo, erosão e denosicão Fusão ROCHA METAMÓRFICA O CICLO DA ROCHA SEDIMENTAÇÃO Climentação e compactação (litificação ou diagênese) ROCHA SEDIMENTAR

ROCHAS ÍGNEAS

Formação

- a) Rochas ígneas **extrusivas** (ou vulcânicas) são formadas pelas erupções vulcânicas ocorridas na superfície.
- b) Rochas ígneas **intrusivas** (ou plutônicas) são produzidas dentro da terra.
 - c) **Magma:** consiste principalmente de materiais silicosos:
 - possui gases, como o vapor de água;
 - origina-se a profundidades de 200 quilômetros;
 - apresenta diferenciação em temperatura, composição química e quantidade de gases;
 - produz rochas ígneas instrutivas (plutônicas).
 - d) Lava: similar ao magma:
 - a maioria dos elementos gasosos escapa;
 - produz rochas ígneas extrusivas (vulcânicas).

Estrutura

- a) Cristalização (padrão ordenado de íons):
- a proporção de resfriamento afeta muito o tamanho do cristal;
- resfriamento lento = cristais grandes;
- resfriamento rápido = cristais pequenos.
- b) Amorfos (padrão desordenado de íons):
- ocorre com o resfriamento instantâneo (temperamento);
- produz rochas vítreas.

Classificação das rochas ígneas

- a) Por meio da textura, do tamanho e do arranjo de seus cristais interligados.
 - Textura fina:
 - forma-se na superfície ou na crosta superior;
- as aberturas deixadas pelas bolhas de gás são chama das de vesículas.
 - Textura grossa: forma-se profundamente no interior.

- Porfiríticas: cristais maiores imersos em uma matriz mais fina de cristais.
 - b) Por composição mineral.
 - Depende da composição do magma e do resfriamento.
 - O mesmo magma pode criar rochas de conteúdo mineral variável.
 - Enquanto o magma resfria, alguns minerais cristalizam antes (a temperaturas bem altas).

ROCHAS METAMÓRFICAS

Formação

- a) Metamórfica: forma que sofre mudança.
- **b) Metamorfismo regional:** materiais sob pressões intensas, alta temperatura.
- c) Metamorfismo de contato (termal): mudanças ocorridas pela proximidade com o magma.
 - d) Metamorfismo de baixo grau: o folhelho torna-se ardósia.
 - e) Metamorfismo de alto grau: os fósseis assentam-se nas rochas.
 - f) Formam-se geralmente durante o desenvolvimento das montanhas.
- **g)** Muitas das rochas metamórficas são mais duras do que as rochas sedimentares.
 - h) O metamorfismo altera a textura.
- i) O metamorfismo de baixo grau torna os materiais mais compactos, mais densos.
 - j) Foliação: partículas de materiais formam linhas umas com as outras.

Agentes do metamorfismo

a) Carlor

- O agente mais importante.
- Fornece a energia para as reações químicas.
- Por exemplo: a argila recristaliza-se em outros minerais a alta temperatura.

b) Pressão

c) Atividade química: o agente químico mais comum é a água.

Tipo de rocha metamórfica

- a) Hornfels: rocha de textura fina, dura e escura, com minerais arranjados ao acaso.
- **b) Ardósia:** rocha de textura fina, folhada, muitas vezes cinza, apresentando clivagem e planos em mica alinhados por pressão.
- c) Mármore: rocha granulada ou de textura sacaróide formada por calcário.
- d) Filito: rocha sedosa, foliada, de granulação mais grossa do que a ardósia.
- **e) Xisto:** rocha foliada, de textura mais grossa e de grau de metamorfismo mais elevado que o filito.
- **f) Gnaisse:** rocha foliada, com bandas do mais alto grau de metamorfismo.
- g) Quartzito: rocha muita dura, de quartzo granular, formada por arenitos.

SÉRIES DE REAÇÃO DE BOWEN

Se um mineral, já formado, permanece no magma, vai reagir com o magma restante para produzir o próximo mineral na sequência. *Por exemplo, primeiro, forma-se a olivina; posteriormente, a olivina reage com o magma restante e forma o piroxênio.*

Lado correto das séries de Bowen

- a) As partes do magma ricas em cálcio formam pequenos cristais de feldspato.
- b) Esses cristais reagem com o sódio do magma para tornarem-se cada vez mais ricos em sódio.

Fim do resfriamento

a) Quando tudo estiver quase frio, o magma restante estará repleto de silício, o que resultará na formação de quartzo.

b) Quando o resfriamento estiver completo, tudo o que tiver se resfriado ao mesmo tempo normalmente estará perto (feldspato, mica e quartzo resfriam-se um perto do outro e formam granito).

Temperatura	Série de reações	Série de reações	Tipos	de	
do magma	descontínuas	contínuas	rocha		
	(minerais máficos)	(minerais félsicos)			
Alta		(abundante em cálcio))	
(cristalização	→	/	Gabro	ou	
antecipada)	Olivina		basalto		
1			Diorito	ou	
	*	/		andesito	
	Piroxênios		Diorito	ou	
	7	\			
	 				
•	Anfibolito	/			
Baixa					
(cristalização	 				
tardia)	Biotita	Biotita			
	`				
	Feldspato de potáss				

TIPOS DE ROCAH /CONT.

SEDIMENTARES

Formação

- a) O intemperismo mecânico forma sedimentos.
- Congelamento
- Transporte
- Atividade biológica: raízes, covas, bombas.

b) O intemperismo químico forma sedimentos.

- A água produz ferrugem (oxidação).
- Agua e CO₂ formam ácido carbônico.
- O granito reage com o ácido carbônico e forma minerais de argila + potássio e sílica.

- c) Litificação: processo pelo qual os sedimentos se tornam sólidos.
- Compactação: o peso comprime os sedimentos mais profundos.
- Cimentação: os materiais suspensos em solução "cimentam" ou unem as partículas.

Classificação das rochas sedimentares

a) Rochas sedimentares detritais ou alóctones.

- Fragmentos de rocha acumulados provenientes de intempérie de transporte.
- Formada principalmente por minerais argilosos e quartzo.
- Diferenciadas pelo tamanho das partículas.
- Conglomerado: formado por partículas de cascalho:
- bastante sortidas;
- pouco sortidas;
- bem compactadas;
- pouco compactadas;
- estratificadas:
- estratos graduais: pedras menores em cima, pedras maiores embaixo.
- Brecha: formada por fragmentos angulares.
- Arenito: formado por fragmentos do tamanho de um grão de areia.
- Folhelho: grãos muito finos.

b) Rochas sedimentares químicas.

- Formadas por materiais em solução em corpos de água.
- A forma mais abundante é o calcário.
- O carvão, embora formado com base em matéria orgânica, também é considerado parte desse grupo.

Característica das rochas sedimentares

- a) As rochas sedimentares formam-se na superfície.
- b) Provenientes da crosta terrestre.

- c) Com base nas rochas sedimentares, podemos reconstruir grande parte da história física da Terra.
- d) São as chaves para o passado do meio ambiente, das plantas, dos animais.
- e) O petróleo e o gás natural encontram-se em bolsões de rochas sedimentares.

Porcentagem de tipos de recha sedimentares

- a) Folhelho 81%.
- b) Arenito 11%.
- c) Calcário 8%.

DESGASTE DAS MASSAS

Paisagens compostas pela água

- a) A superfície da Terra é dinâmica evolui.
- b) Não é plana, nem perfeitamente arredondada.

O que é desgaste das massas?

- a) O desgaste das massas é o movimento de rochas e solos para baixo, influenciado diretamente pela força da gravidade.
- b) A gravidade é a força controladora, mas a água é o ímpeto que a mantém em movimento.
- c) A água destrói a coesão entre as partículas, causando perda nos materiais.
- d) Entretanto, o material permanecerá estacionado até que exceda seu ângulo de repouso.
 - O **ângulo de repouso** é o ângulo mais íngreme que permite que uma partícula solta permaneça estacionada.
 - O ângulo de repouso varia de substância a substância.
 - Superfícies muito íngremes geram movimento.

Intemperismo e vales

 a) Os vales dos rios são as formas que mais apresentam essas evidências na Terra.

- b) Eles são, essencialmente, formados pelo "**intemperismo**", pela decomposição e desintegração de rochas que estão na superfície da Terra, ou perto dela.
 - c) O intemperismo é o precursor direto do desgaste das massas.

Os quatro processos do degaste de massas

- a) Deslizamento: um movimento de terra ao longo de uma superfície curva que ocorre quando uma massa de material não-consolidado, em geral, rochas, cai como uma unidade.
- **b) Precipitação de rochas:** um deslizamento de uma massa rochosa que ocorre rapidamente em planos de debilidade.
- c) Avalanche: fragmentos de rocha que contêm grandes quantidades de água que no geral ocorre em desfiladeiros e barrancos de regiões montanhosas nevadas.
- **d) Inundação:** ocorre geralmente em regiões úmidas, é caracterizada pela descida de água saturada de sedimento rica em argila.

ÁGUA

- A Terra contém 521 milhões de quilômetros cúbicos de água.
- 97,2% da água da Terra estão nos oceanos.
- 2,16% estão nos glaciares e em forma de neve.
- 0,65% está nos lagos, nos rios, na água subterrânea e na atmosfera.
- 90% de todo o gelo da Terra e 70% de toda a água doce estão na Antártida.
- O maior corpo de água isolado da Terra é o Mar Cáspio, localizado na Ásia
- O maior lago de água doce do planeta é o Lago Baikal, situado na Rússia.

O CICLO DA ÁGUA

O caminho que a água percorre

- a) A água da Terra evapora em virtude do calor e da energia provenientes do Sol.
- b) O vento transporta a água evaporada para regiões onde as nuvens se formam.
 - c) Chove, e assim a água retoma a Terra.
- d) A água da chuva volta para a terra e o mar e se evapora novamente, repetindo o ciclo.

A água que cai sobre a Terra

- a) A água que cai na terra é absorvida pelas plantas ou pelo próprio solo.
- b) A água absorvida pelas plantas é posteriormente liberada para a atmosfera por meio do processo denominado de transpiração.
 - c) As plantações transpiram em média 60 centímetros ao ano.
 - d) As árvores transpiram duas vezes essa quantidade.
- e) A água não absorvida pelas plantas movimenta-se para o subsolo e distribui-se para lagos, dos e oceanos.

A dinâmica do ciclo da água

- a) O ciclo da água é um *equilíbrio dinâmico*. Isso significa que a quantidade total de água contida na atmosfera permanece essencialmente sempre a mesma, em qualquer momento, seja ela derivada da terra ou da água.
- b) Na terra, a precipitação excede a evaporação. Isso quer dizer que, num período de tempo médio, vai cair mais chuva numa determinada área do que ocorrer evaporação.
- c) Por outro lado, na água, a evaporação excede a precipitação. Dessa forma, mantém-se o equilíbrio.

Água corrente

- a) A água corrente é o fator mais importante da conformação da superfície terrestre.
 - b) A água movimenta-se pela gravidade.

- c) A fricção do líquido, a ação constante da água desgastando a rocha, forma canais pelas rochas.
- d) Um gradiente é uma gota vertical sobre uma distância lateral definida a inclinação de um plano, leito de rio, etc., expresso em porcentagem, graus ou fração.

Energia e descarga

- a) Quanto mais íngreme o gradiente, libera-se energia potencial de movimento maior.
 - A lei da conservação da energia prega que a energia não pode ser criada nem destruída, mas é sempre conservada.
 - A energia potencial permanece em repouso enquanto espera por uma força que a converta em energia cinética.
 - A gravidade libera a energia potencial que causa a movimentação da água.
- b) A descarga é definida como o volume de água que passa por uma unidade de tempo específica, por exemplo, 17.300 metros cúbicos por segundo.
- c) A descarga não é uma constante e pode ser influenciada por numerosos fatores como gravidade, gradiente, etc.

Perfil longitudinal de um rio

- a) Vista de corte seccional de um rio, da nascente até a desembocadura ou foz.
- b) A água geralmente flui mais rápido na cabeceira, na parte superior, ou seja, na nascente (ou lago ou rio), do que na desembocadura, que é onde o curso d'água se abre para outro corpo.
 - c) Quanto mais íngreme o gradiente, menor a descarga.
 - d) Quanto menor o gradiente, maior a descarga.

Nível da base ou leito

a) As correntezas não podem erodir seus canais permanentemente. O nível mais profundo que pode erodir é denominado de **leito**. Nesse nível, foi

liberada tanta energia potencial que o que sobra dela já não traz consequências.

- b) nível do mar por ser o ponto mais baixo do planeta (não contém energia potencial significativa) é considerado o nível base da Terra, por isso todos os rios correm para lá.
- c) Os leitos temporais ou locais são responsáveis pelos lagos e grandes cursos d'água que podem, em raras circunstâncias, se tornar mais profundos.

Processo dinâmico

- a) O processo dinâmico: quanto mais profundamente se corta um canal, a água apresenta menos energia. Portanto, ela se movimenta de forma mais lenta e causa menos movimento de sedimentos.
- b) Um lago, por exemplo, evita a erosão de seus afluentes abaixo de seus próprios leitos em qualquer ponto acima do lago.
- c) Qualquer mudança no leito do rio vai corresponder a uma mudança na atividade das águas correntes.

Trabalho dos cursos d'água

- a) Os cursos d'água são qualquer forma de água corrente, seja um riacho ou um oceano.
- b) Seu movimento constante produz erosão, que vem a ser a remoção de solo e rochas de certa região.
 - c) Esses produtos são transportados pela correnteza em três formas:
 - em solução, com o sal dissolvido na água da correnteza.
 - em suspensão, permanecendo separados e diferenciados do barro e do sal.
 - os sedimentos rolam pelo fundo e são arrastados e depositados em outras áreas pela correnteza. Esse sedimento é denominado de carga do leito.

Transporte

a) A quantidade de cada tipo de produto que uma correnteza transporta vai variar essencialmente dependendo da distância que ela atravessa. Porém, mesmo no curso de um rio, a variação pode ser surpreendente. As partes por

milhão podem apresentar variações tão baixas como 115 a 120, e tão altas como 1.000.

- b) Muitas correntezas arrastam suas cargas maiores em suspensão de sal, cascalho e barro.
- c) O Rio Mississipi, por exemplo, totaliza uma média de transporte de 750 toneladas. Disso, 500 toneladas em suspensão, 200 toneladas em solução e 50 toneladas representam a carga do leito.
- d) As soluções e as suspensões estão em constante movimento, pois são arrastadas dentro da própria correnteza. A carga do leito é arrastada pelo rio de forma intermitente.

Competência e capacidade

- a) A competência refere-se ao tamanho máximo de partículas que um curso d'água é capaz de arrastar.
- **b)** A velocidade determina a competência. Se a velocidade de um curso aumenta o dobro, a competência aumenta quatro vezes em proporção a sua energia cinética.
- c) A capacidade refere-se à carga máxima que um curso d'água pode arrastar de qualquer um dos três produtos acima mencionados. Está diretamente relacionada à descarga (volume).

Deposição

- a) Quando um curso d'água diminui, reduz-se sua competência, e os sedimentos começam a separar-se em primeiro lugar as partes maiores.
- b) Cada tamanho de partícula apresenta um momento crítico particular em que começa a se sedimentar.
- c) Esse processo é denominado de separação, e explica por que partículas de tamanhos diferentes se sedimentam juntas.

Aluvião e distributários

- a) Todos os tipos de produto depositados em um rio são chamados de aluvião.
- b) Quando a água em movimento entra em água estacionada, forma-se um **delta**, uma acumulação de sedimento.

- c) Um delta é o causador da diminuição do gradiente de um rio, geralmente permitindo a formação de pequenos canais dentro do delta chamados de **distributários**.
- d) Recebe o nome de delta pela letra grega em forma de triângulo, pois a interação entre terra e água também resulta vagamente numa forma triangular.

Diques naturais

- a) Os diques naturais são barreiras paralelas de terra em relevo que se formam nos dois lados do rio. São criados quando a competência decrescente de uma corrente, depois de sofrer elevação, causa o depósito de sua carga.
- b) A água não consegue se juntar ao rio através dos diques, portanto ocorre a formação de pântanos e áreas de pouca drenagem em planícies.

Rio Yazoo

Um tributário que não consegue entrar em um rio devido a um dique é chamado de rio yazoo, já que o Rio Yazoo perto do Mississipi se formou dessa maneira.

Vales fluviais

- a) Existem dois tipos de vale fluvial: os em forma de V e os de grandes solos planos.
- b) Apresentam caracteristicamente quedas-d'água e cursos d'águas rápidas, causados pela variação na erosão dos diferentes materiais que são arrastados pela correnteza.
- c) Um vale estreito em forma de V indica que a função principal de um rio é reduzir ou alterar o leito.

Leitos resistentes, cursos d'águas rápidas e quedas-d'água

- a) Os **leitos resistentes geram os cursos d'águas rápidas**. Por exemplo, áreas aquáticas de bastante movimento; sendo temporariamente leito rio acima, enquanto cortam a correnteza rio abaixo.
- b) As cachoeiras comportam-se de maneira similar, mas em maior magnitude. As Cataratas do Niágara são um bom exemplo desse tipo de

atividade. Sua parte superior é de dolomita resistente e sua base é de folhelho comprimido. Quando a base de folhelho sofre erosão, a dolomita se afunda, e a queda-d'água se dirige rio acima.

Meandros, lagos em arco e os Everglades

- a) Às vezes a correnteza é diminuída por variações na erosão, e ocorre um **meandro**, uma sinuosidade no curso do rio.
- b) Quando a erosão através da curva estreita de um meandro causa uma ruptura, forma-se um lago em forma de arco.
- c) Com a intenção de reduzir inundações, às vezes criam-se rupturas artificiais que aumentam a velocidade da água em uma determinada direção. Isso também causa grande deposição na área final. Exemplos: Rio Saint Lawrence (Canadá) e os Everglades (Estados Unidos).

Vales amplos

- a) Quando um curso d'água corta um canal perto do nível base (o mar), os cortes rio abaixo tomam-se menos dominantes.
- b) Nesse ponto, sua energia se torna direcionada de um lado a outro. Um vale torna-se mais amplo à medida que é erodido por um curso d'água, de lado a lado, criando uma planície aluvial de terreno baixo, uma área plana, em um vale com grande probabilidade de sofrer inundações periódicas.
 - c) Geralmente, essas características são de cursos d'água maduros.
 - d) Os cursos d'água numa planície fluem em meandros.

Velocidade da água e erosão

- a) À proporção que o curso d'água amadurece, possui menor gradiente.
- b) Isso leva a um aumento na velocidade do fluxo de água do canal exterior, aumentando também a erosão nos bancos exteriores acumulação de aluviões e seixos nas margens dos rios.
- c) A velocidade proporcionalmente diminuída na curva interior causa deposição crescente, denominada de ponto de barragem.
- d) Existe o aumento da velocidade no lado da correnteza do meandro causada pelo gradiente. Isso, por outro lado, pode levá-lo a fazer uma curva e mover-se rio abaixo.

Redes de drenagem

Há quatro tipos de rede de drenagem importantes.

- a) Dendrítica: aquela cujo sistema de fluxo das águas se assemelha com os ramos de uma árvore.
- **b)** Radial: aquela cujos cursos d'água correm em todas as direções partindo sempre de um ponto central.
- **c) Retangular:** aquela que apresenta rios fortemente angulares. No geral, ajustados aos sistemas de juntas e falhas.
- **d) Em grade**: aquela que possui tributários de uma estrutura praticamente paralela ocupando vales formados por camadas de rochas inclinadas deformadas de um plano originalmente horizontal. Própria de regiões intensamente dobradas, chamadas estratificadas.

ÁGUA SUBTERRÂNEA

Água abaixo da superfície da Terra

- a) A água subterrânea existe em espaços entre partículas do solo e sedimento e nas uniões e fraturas da rocha viva ou fresca.
- b) É o maior reservatório de água doce disponível para os seres humanos (representa 30 vezes mais do que lagos e rios).
 - c) Fornece água potável a 50% da população mundial.

Distribuição

- a) Saturação é a quantidade máxima de água que o ar pode ter a certa temperatura e pressão.
- b) A superfície piezométrica corresponde ao mais alto nível de uma zona saturada de água subterrânea.
- c) A água subterrânea escoa-se lentamente no subsolo, dos lugares mais altos pata os mais baixos, desde que não encontre uma barreira impermeável.
- d) Uma zona de saturação que está acima da superfície piezométrica formada por uma camada impermeável é denominada de aquiclude. Contrastivamente, uma área na qual se permite que a água subterrânea se movimente com mais facilidade é chamada de aquífero.

e) Zona de aeração: área acima da superfície piezométrica. Solo, rochas e aberturas sedimentares estão subsaturados e repletos de ar.

Mananciais

- a) Os mananciais são fluxos de água subterrânea que emergem naturalmente na superfície da Terra.
- b) Muitos são emissões espontâneas de água causadas pela intersecção da superfície terrestre com a superfície piezométrica.
- c) Os mananciais quentes são dependentes de rochas ígneas e contêm água que está em média 20 a 30°C mais quente que o ar circundante.
- d) Os gêiseres formam-se quando uma fonte de água quente é periodicamente ejetada pelo ar.
- e) Os poços naturais ou artificiais são formados de um orifício aberto na zona de saturação, onde todos os espaços abertos na rocha ou no sedimento se enchem de água.
 - Isso, por sua vez, forma um cone de depressão na superfície piezométrica exatamente ao redor do poço.
 - A diferença de altura entre o fundo desse cone e a superfície piezométrica original é chamada de drawdown.
 - f) Nos poços artesianos, a água eleva-se acima de seu nível inicial.
 - g) Os poços podem ter correnteza ou não.

Teor de esgotamento da água subterrânea

- a) A superfície piezométrica, ou nível hidrostático, do mundo tem caído a um ritmo de I metro por ano.
- b) Mesmo se essa condição fosse reversível, precisaríamos de mil anos para recuperar o nível original.
 - c) Essa perda provoca danos a rodovias, estradas e pontes.
- d) E ainda alterou irremediavelmente os gradientes, causando grandes inundações em planícies e novas inundações em áreas antes não-inundáveis.
- e) A água subterrânea, em muitas partes do mundo, está contaminandose.
 - A purificação depende do tipo de substrato abaixo do solo.

- O calcário, que é cavernoso, não promove a purificação. O arenito, que é impermeável, promove.
- Já que são necessários muitos anos para a recuperação, se é que ela existe, muitas vezes a única solução é abandonar o poço para que a área seja revitalizada.
- f) A água subterrânea também desempenha um papel importante na formação geológica de uma região porque com o tempo ela dissolve as rochas.
- A água subterrânea é vital porque sustenta rios e cursos d'água quando há escassez de chuvas.
- A erosão do subsolo acarreta em desabamentos de bolsões ou grutas subterrâneas com a formação de poços mais ou menos profundos no terreno, chamados dolinas e ainda na formação de possíveis cavernas não desejadas. Isso pode resultar em desastres ecológicos.

Cavernas

- a) Nos Estados Unidos, existem cerca de **17.000 cavernas** câmeras formadas naturalmente.
- b) Elas se formam quando a água subterrânea ácida segue uma debilidade na rocha, nas uniões e nos leitos planos e "cava um buraco externo".
- c) As formações rochosas que pendem e sobressaem numa caverna são chamadas de estalactite - as que são ocas e apontam do teto para baixo, e estalagmite - as que apontam do solo para cima.
 - A boa forma para memorizar a diferença entre os dois tipos de formação é que a estalactite tem o "T" que possui a extremidade apontando para baixo, e a estalagmite tem o "M" que apresenta pontas para cima.

Topografia cárstica

- a) Consiste de numerosas dolinas. Por exemplo, depressões.
- b) Pode se formar com lentidão, durante muitos anos, ou instantaneamente.

c) Possui poucos e curtos cursos d'água.

PLACAS TECTÔNICAS

- a) Na teoria proposta por **Alfred Wegener** no início dos anos 1900, determinou-se que a camada mais externa da Terra está composta por aproximadamente 20 placas que estão em movimento, uma em relação à outra. E a interação entre essas placas que causa a formação de vulcões, terremotos e a crosta terrestre.
- b) A teoria também diz que, há possivelmente 200 milhões de anos, a Terra era um grande continente chamado **Pangea**, que se separou formando os continentes que conhecemos hoje em dia.
 - c) Essa teoria é sustentada pelas seguintes evidências:
 - paleomagnetismo, que é o magnetismo natural que permanece nos corpos rochosos, pode ser usado para determinar a localização dos pólos magnéticos e a latitude da rocha quando foi anteriormente magnetizada. O paleomagnetismo sugeriu urna mudança na direção do campo magnético da Terra no passado geológico.
 - **terremoto** é a vibração de terra produzida por uma liberação rápida de energia, sempre se dá nos limites das placas.
 - Os principais sistemas montanhosos estão geralmente nos limites das placas, onde existe pressão entre uma placa e outra. Esses são os limites convergentes.
 - Idade dos sedimentos.

VULCÕES

- a) Os vulcões formam-se frequentemente nas bordas oceânicas.
- b) Estes são os três tipos de estrutura vulcânica:
- Vulção escudo: apresenta forma de uma cúpula plana, ampla com pendentes moderados. Está formado por lava basáltica derretida.
- Cones de escória: são vulcões pequenos formados por material piroclástico, de textura de rocha ígnea resultando de agregamentos de rochas individuais que se consolidam e são ejetados durante a erupção.

- Cones compostos: são vulcões formados pela combinação de lava e materiais piroclásticos.
- c) A natureza de uma erupção vulcânica depende de fatores como composição e temperatura da lava.
- d) A formação do magma -lava dentro da terra é determinada pela pressão, temperatura e constituição.
- e) Quando Os vulcões entram em erupção, lançam lava, gases, rocha pulverizada e vidro.
 - f) As regiões vulcânicas também podem conter:
 - neck vulcânico: vestígios erodidos de lava que em algum momento ocuparam a abertura vulcânica.
 - crateras depressões à volta da abertura do vulcão.
 - erupções fissurais: a lava é expulsa por fissuras estreitas na crosta.
 - caldeiras: grandes depressões causadas pelo colapso ou expulsão do topo do vulcão.

TERREMOTOS

- a) Os **terremotos** são causados pelas vibrações que ocorrem quando as placas tectônicas se movimentam uma contra a outra.
- b) Há dois tipos de onda causados pelos terremotos: as **ondas sísmicas de superfície**, que são capazes de viajar ao longo da camada externa (superfície) da Terra; e as **ondas sísmicas de corpo**, que são capazes de viajar pelo interior da Terra.
- c) Essas ondas são ainda subdivididas em **ondas "P" (primárias)** e **ondas "S" (secundárias).** As ondas "P" produzem pressão por expandir e comprimir alternadamente os materiais pelos quais elas passam. As ondas "S" causam sacudidas devido à oscilação que são perpendiculares à direção da propagação.
 - Uma forma de memorizar os tipos de ondas: a "P" = pressão; a "S" = sacudidas.
- d) **O epicentro** de um terremoto é a posição na superfície que está diretamente acima do centro, o foco do terremoto propriamente dito.

e) A **escala Richter** é usada para medir e registrar a energia de um terremoto. Cada unidade de incremento da escala indica dez vezes o poder do terremoto. Por exemplo, um terremoto de 7,6 graus é dez vezes mais potente do que um de 6,6 graus.